<u>10-Methyl-4-phenyl-3,5-dioxopyrimido[5,6-c]-1'-azaquinolizine (IVb)</u>. To a 0.75-g portion (2.5 mmoles) of compound Ib was added 1.7 g (25 mmoles) of a 25% aqueous ammonia solution, and the mixture was refluxed for 40 min. After cooling, the resulting precipitate of IVb was filtered off. Yield 0.3 g (40%), mp >350°C (DMF). Found: C 66.2; H 5.0; N 18.1%. $C_{1,7}H_{1,2}N_{4}O_{2}$. Calculated: C 67.1; H 3.9; N 18.4%.

<u>1-Methyl-5-formyl-6-aminouracil (IX)</u>. To a 1.2-g portion (5 mmoles) of 1-methyl-6-(1'pyridinio)-5-formyluracil-2-oleate was added 3.4 g (50 mmoles) of a 25% aqueous ammonia solution, and the mixture was refluxed for 40 min. After cooling, the precipitated compound IX was filtered off. Yield 0.59 g (68%), mp >330°C (DMF). Found: C 42.9; H 4.4; N 24.8%. $C_6H_7N_3O_3$. Calculated: C 42.6; H 4.1; N 24.8%.

LITERATURE CITED

- 1. A. E. Chichibabin and O. A. Zaide, Zh. Russ. Fiz.-Khim. Ova, <u>46</u>, 1216 (1914).
- 2. A. F. Pozharskii, Theoretical Foundations of Heterocyclic Chemistry [in Russian], Khimiya, Moscow (1985), p. 237.
- 3. R. O. Kochkanyan, S. S. Radkova, N. L. Klyuev, L. Yu. Petrovskaya, and S. N. Baranov, Khim. Geterotsikl. Soedin., No. 12, 1687 (1978).
- 4. R. O. Kochkanyan, A. N. Zaritovskii, N. L. Klyuev, B. M. Zolotarev, and S. N. Baranov, Khim. Geterotsikl. Soedin., No. 2, 255 (1978).
- 5. R. O. Kochkanyan, S. S. Lukanyuk, T. A. Dmitruk, and N. G. Korzhenevskaya, Zh. Obshch. Khim., 55, 195 (1985).
- 6. R. O. Kochkanyan, G. I. Belova, V. S. Garkusha-Bozhko, A. N. Zaitovskii, and S. N. Baranov, Khim. Geterotsikl. Soedin., 1426 (1975).
- 7. N. M. Cherdantseva, V. M. Nesterov, and T. S. Safonova, Khim. Geterotsikl. Soedin., No. 6, 834 (1983).

MASS-SPECTROMETRIC STUDY OF ISOMERIC 5-AMINO-1,2,3-THIADIAZOLES

AND 5-MERCAPTO-1,2,3-TRIAZOLES

UDC 543.51:547.789.1'791

A. T. Lebedev, V. E. Shevchenko,A. G. Kazaryan, V. A. Bakulev,Yu. M. Shafran, M. Yu. Kolobov, and V. S. Petrosyan

The behavior of the isomeric 5-amino-1,2,3-thiadiazoles and 5-mercapto-1,2,3-triazoles under electron impact was studied. It was shown that mass spectrometry can serve as a rapid and reliable method for the identification of these compounds. Key factors in the assignment of a compound to one or the other class are the peaks of the $[M - N_2]^+$ ions, which are more intense in the case of the thiadiazoles, and the ions determined by the decomposition of the prototropic forms of the triazoles. The compositions of the ions were determined by the highresolution mass spectra.

Either 5-amino-1,2,3-thiadiazoles or the isomeric 5-mercapto-1,2,3-triazoles are formed in the reaction of thioamides, containing acidic methylene hydrogen atoms in the α -position to the thioamide group, with tosylamides.* The structural determination of the products of this cyclization is performed by chemical methods. However, it is known that the interconversion of aminothiadiazoles and mercaptotriazoles proceeds at raised temperatures [2] and under acid-base catalysis [3]; this makes the results of the chemical proof of the structure of these heterocyclic compounds inconclusive. The mass-spectrometric experiment

*It was shown that the final stage of this reaction is the cyclization of the intermediate α -diazothioamides [1].

M. V. Lomonosov Moscow State University, Moscow 117234. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 681-689, May, 1987. Original article submitted November 10, 1985.

permits the determination of the structure of organic compounds under conditions where intermolecular interactions and the effects of the solvent are absent. When the substance is sufficiently volatile, a qualitative reproducible mass spectrum can be obtained without heating, or with the insignificant warming up of the substance.

The mass spectra of the isomeric 5-amino-1,2,3-thiadiazoles (I) and 5-mercapto-1,2,3-triazoles (II) were studied:

a,c,g,h,j X = H; b,d $X = CH_3$; e $X = CH_2COOC_2H_5$; f,i $X = NH_2$; a,b,e-i Y = O; c,d,jY = S; a-f, j $R^1 = H$; g,i $R^1 = CH_3$; h $R^1 = C_2H_5$; a-i $R^2 = H$; j $R^2 = CH_3$

The direct comparison of the spectra of the compounds (I) and (II) permits the conclusion that there are principal differences in the routes of the decomposition of these isomers. The main characteristics of the route of the decomposition of the thiadiazoles (Ia-e) can be described by a general scheme.*

According to the intensity of the peaks in the mass spectra of all the thiadiazoles (I), the main peaks are those of the molecular ions (M^+) . The peaks of the $[M - N_2]^+$ ions also have adequate intensity (see Table 2). It is necessary to emphasize that the relative intensities of the peaks of the $[M - N_2]^+$ ions are more than tenfold lower in the spectra of the isomeric mercaptotriazoles (II) (see Table 2); this permits the reliable assignment of a compound to one or the other class on the basis of the relative intensity of the peak of the given fragment. The structure of this ion, which determines the subsequent decomposi-Scheme 1

tion, may be described by several structural formulas. As was previously shown [4-6], the linear form of the $[M - N_2]^+$ ion (A), which is formed right after the cleavage of the nitrogen molecule, is stabilized on account of the rearrangement to the thioketene (B) if an alkyl substituent occurs at the 5 position of the thiadiazole ring, or the rearrangement to the thiirene (C) if an amino group occurs at this position.

The amino group at the 5 position may also participate in the cyclization (accompanied by the migration of a hydrogen atom) of the $[M - N_2]^+$ ion to the azirine (D). It was noted

^{*}The elemental compositions of the ions were determined by the high-resolution mass spectra (see Table 1).

Com-	Accurate	ion mass	Elemental composition	intensities of the peaks of isobaric ions	
pound	determined	calculated	of the ion		
1	2	3	4.	5	
Ia 99 89 88 73 72 71 68 44	98,9781 88,9936 88,0100 72,9988 71,9674 71,9904 70,9829 68,0135 44,0136	98,9779 88,9935 88,0095 72,9986 71,9669 71,9908 70,9830 68,0138 44,0136	$\begin{array}{c} C_{3}HNOS (\Phi_{1}) \\ C_{2}H_{3}NOS (\Phi_{4}) \\ C_{2}H_{4}N_{2}S (\Phi_{2}) \\ C_{2}H_{3}NS (\Phi_{9}) \\ C_{4}OS (\Phi_{5}) \\ C_{2}H_{2}NS (\Phi_{10}) \\ C_{4}HNS (\Phi_{3}) \\ C_{3}H_{2}NO (\Phi_{5}) \\ CH_{2}NO (\Phi_{7}) \end{array}$	1 6	
Ib 113 103 102 85 72 68	112,9940 103,0100 102,0257 84,9982 71,9902 68,0136	112,9935 103,0092 102,0252 84,9986 71,9908 68,0138	$\begin{array}{c} C_{4}H_{3}NOS \ (\Phi_{1}) \\ C_{3}H_{5}NOS \ (\Phi_{4}) \\ C_{3}H_{6}N_{2}S \ (\Phi_{2}) \\ C_{3}H_{3}NS \ (\Phi_{3}) \\ C_{2}H_{2}NS \ (\Phi_{10}) \\ C_{3}H_{2}NO \ (\Phi_{6}) \end{array}$		
Ic 115 105 88 84 72 71 68 67 66	$\begin{array}{c} 114,9558\\ 104,9700\\ 87,9437\\ 83,9907\\ 71,9908\\ 70,9828\\ 68,0379\\ 67,0303\\ 66,0221 \end{array}$	$\begin{array}{c} 114,9550\\ 104,9706\\ 87,9441\\ 83,9908\\ 71,9908\\ 70,9830\\ 68,0375\\ 67,0297\\ 66,0219\\ \end{array}$	$ \begin{bmatrix} C_3HNS_2 & (\Phi_1) \\ C_2H_3NS_2 & (\Phi_4) \\ C_2S_2 & (\Phi_5) \\ C_3H_2NS & (\Phi_6) \\ C_2H_2NS & (\Phi_6) \\ C_2H_2NS & (\Phi_10) \\ C_3H_4N_2 & [M-N_2, -S_2] \\ C_3H_4N_2 & [M-N_2, -S_2H] \\ C_3H_2N_2 & [M-N_2, -S_2H_2] \end{bmatrix} $		
Id 129 88 85 84 82 81 79	128,9710 87,9440 84,9985 83,9910 82,0531 81,0460 79,0299	128,9707 87,9441 84,9986 83,9908 82,0532 81,0454 79,0297	$ \begin{bmatrix} C_4H_3NS_2 & (\Phi_1) \\ C_2S_2 & (\Phi_5) \\ C_3H_3NS & (\Phi_3) \\ C_3H_2NS & (\Phi_6) \\ C_4H_6N_2 & [M-N_2, -S_2] \\ C_4H_5N_2 & [M-N_2, -S_2H] \\ C_4H_3N_2 & [M-N_2, -S_2H_3] \end{bmatrix} $		
Ie 202 185 157 128	202,0153 185,0130 157,0181 127,9937	202,0161 185,0133 157,0184 127,9939	$ \begin{bmatrix} C_{8}H_{6}N_{4}O_{3}S & [MC_{2}H_{4}] \\ C_{5}H_{5}N_{4}O_{2}S & [MC_{2}H_{5}O] \\ C_{4}H_{5}N_{4}OS & [MCOOC_{2}H_{5}] \\ C_{3}H_{2}N_{3}OS & [MNHCH_{2}COOC_{2}H_{5}] \end{bmatrix} $		
Ik 117 116 100 72 68	117,0245 116,0412 100,0226 72,0448 71,9909 68,0141	117,0248 116,0408 100,0221 72,0449 71,9908 68,0136	$ \begin{array}{c} C_4 H_7 NOS & (\Phi_4) \\ C_4 H_8 N_2 S & (\Phi_2) \\ C_4 H_6 NS & (\Phi_3) \\ C_3 H_6 NO & (\Phi_7) \\ C_2 H_2 NS & (\Phi_{10}) \\ C_3 H_2 NO & (\Phi_6) \end{array} $	8	
I & ₁₁₄ 72 70	114,0001 71,9676 71,9909 70,0035 69,9749	114,0000 71,9670 71,9908 70,0041 69,9752	$\begin{array}{cccc} C_2H_2N_4S & (\Phi_2) \\ C_2OS & (\Phi_5) \\ C_2H_2NS & (\Phi_{10}) \\ CON_3 & (\Phi_7) \\ C_2NS \end{array}$	1 8 1 5	
IIa28 127 126 99 89 88 71 67	127,9914 126,9844 126,0001 98,9781 88,9937 88,0100 70,9825 71,0236 67,0175	127,9918 126,9840 126,0000 98,9779 88,9935 88,0095 70,9830 71,0245 67,0171	$ \begin{bmatrix} C_{3}H_{2}N_{3}OS & [M-NH_{2}] \\ C_{3}HN_{3}OS & [M-NH_{3}] \\ C_{3}H_{2}N_{4}S & [M-H_{2}O] \\ C_{3}HNOS & (\Phi_{1}) \\ C_{2}H_{3}NOS & (\Phi_{4}) \\ C_{2}H_{4}N_{2}S & (\Phi_{2}) \\ C_{2}HNS & (\Phi_{3}) \\ C_{2}HNS & (\Phi_{3}) \\ C_{2}HN_{3} \\ \end{bmatrix} $	32	
68	68,0140 68,0245	68,0136 68,0249	$\begin{bmatrix} C_3H_2NO & (\Phi_6) \\ C_2H_2NO & (\Phi_6) \end{bmatrix}$	l l	
IIb 128 127 140 113 103 102 85	127,9921 126,9848 140,0151 112,9941 103,0094 102,0254 84,9994 68,0247	127,9919 126,9841 140,0157 112,9935 103,0092 102,0252 84,9986 68,0249	$\begin{bmatrix} c_{2}t_{2}t_{3}\\ C_{3}H_{2}N_{3}OS & [MCH_{3}NH]\\ C_{3}HN_{3}OS & [MCH_{3}NH_{2}]\\ C_{4}H_{3}AS & [M-H_{2}O]\\ C_{4}H_{3}NOS & (\Phi_{1})\\ C_{3}H_{5}NOS & (\Phi_{4})\\ C_{3}H_{5}NOS & (\Phi_{2})\\ C_{4}H_{3}NS & (\Phi_{3})\\ C_{4}$		
68	68,0138	68,0136	$\begin{vmatrix} C_{24} I_{24} N_3 \\ C_3 H_2 NO & (\Phi_6) \end{vmatrix}$		

TABLE 1. High-Resolution Mass Spectra of the Compounds (I) and (II)

TABLE 1 (Continued)

1	2	3	4	5
IIc 126 115 105 88 84 68 67	$\begin{array}{c} 126,0002\\ 114,9559\\ 104,9703\\ 88,0100\\ 87,9451\\ 83,9906\\ 68,0372\\ 68,0245\\ 67,0292 \end{array}$	$\begin{array}{c} 126,0000\\ 114,9550\\ 104,9706\\ 88,0095\\ 87,9441\\ 83,9908\\ 68,0375\\ 68,0249\\ 67,0297\end{array}$	$\begin{array}{cccc} C_{3}H_{2}N_{4}S & [M-H_{2}S] \\ C_{3}HNS_{2} & (\Phi_{1}) \\ C_{2}H_{3}NS_{2} & (\Phi_{4}) \\ C_{2}H_{4}N_{2}S & (\Phi_{2}) \\ C_{2}S_{2} & (\Phi_{5}) \\ C_{3}H_{2}NS & (\Phi_{6}) \\ C_{3}H_{4}N_{2} & [M-N_{2}, -S_{2}] \\ C_{2}H_{2}N_{3} \\ C_{3}H_{3}N_{2} & [M-N_{2}, -S_{2}H] \end{array}$	1 6 1 1
IIf ₁₂₈ 102 68	127,9922 102,0021 68,0252	127,9919 102,0014 68,0249	$\begin{array}{l} C_{3}H_{2}N_{3}OS [M-NHNH_{2}] \\ C_{3}H_{4}NOS [M-N_{2}, \ -N_{2}H] \\ C_{2}H_{2}N_{3} \end{array}$	
IIg 142 141 128 125 103	142,0072 140,9987 127,9925 125,0468 103,0097	142,0075 140,9997 127,9919 125,0463 103,0092	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
102 72 68 47	$102,0244 \\71,9900 \\71,9673 \\68,0245 \\68,0138 \\46,9952$	$102,0252 \\71,9908 \\71,9670 \\68,0249 \\68,0136 \\46,9935$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	8 1 1 4
IIh ₁₅₅ 144 139 61	155,0151 144,0355 144,0104 139,0623 61,0111	155,0153 144,0357 144,0106 139.0620 61,0112	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 8
IIi 142 116 101 72 68	142,0071 116,0173 101,0175 71,9909 71,9673 68,0141	$\begin{array}{c} 142,0075\\ 116,0170\\ 101,0173\\ 71,9908\\ 71,9670\\ 68,0136\end{array}$	$\begin{array}{cccc} C_4H_4N_3OS & [M-N_2H_3] \\ C_4H_6NOS & [M-N_2, -N_2H] \\ C_3H_5N_2S & [\Phi_3] \\ C_2H_2NS & [\Phi_9-CH_3] \\ C_2OS & (\Phi_5) \\ C_3H_2NO & (\Phi_6) \end{array}$	10 1
II j 129 117 105 88 85 81 80 79 74	128,9710 116,9712 104,9698 87,9437 84,9976 81,0452 80,0382 79,0301 74,0056	$\begin{array}{c} 128,9707\\ 116,9707\\ 104,9707\\ 87,9441\\ 84,9986\\ 81,0452\\ 80,0374\\ 79,0296\\ 74,0064 \end{array}$	$ \begin{array}{cccc} C_4H_3NS_2 & (\Phi_1) \\ C_3H_3NS_2 & [M-CH_3N_3] \\ C_2H_3NS_2 & (\Phi_4) \\ C_2S_2 & (\Phi_5) \\ C_3H_3NS & (\Phi_3) \\ C_4H_5N_2 & [M-N_2, -S_2H] \\ C_4H_4N_2 & [M-N_2, -S_2H_2] \\ C_4H_3N_2 & [M-N_2, -S_2H_3] \\ C_2H_4NS \end{array} $	

TABLE 2. Intensities of the Peaks of the Characteristic Fragment Ions in the Mass Spectra of the Compounds (I) and (II) in Percentages of the Complete Ion Current

Com- pound	۰W	$[M - N_2]$	[XHNW]	M – NH, X	M H ₂ Y	Φι	Φ.	Φ3	Ф4	Φ5	Φ_{6}	Φ7	Ф8	Φ,	Ф10	46	45
Ia Ib Ic Id Ik Ila Ilb IIc IIf IIg IIi IIj	$\begin{array}{r} 23,3\\ 9,6\\ 21,9\\ 21,4\\ 12,9\\ 6,5\\ 21,7\\ 28,6\\ 33,4\\ 28,0\\ 13,5\\ 16,3\\ 32,5\\ \end{array}$	3,9 3,0 7,2 3,4 1,8 6,2 0,3 0,2 0,3 0,2 0,3 0,1 0,1		22,6 8,2 14,9 0,6	0.2 0.2 0.8 3,3 2,6 0,5 0,3 0,5	3.6 11.7 1.1 3.5 0,1b 1.0 1.3 0,5 - 3.1d 0.4b 0.2	$\begin{array}{c} 2.2 \\ 1.3 \\ - \\ 2.0 \\ 0.2 \\ 0.5 \\ 0.4 \\ 0.1 \\ 1.5 \\ - \\ - \end{array}$	1.5 1.4 1.3 1.4 2.9b 1.7 1.1 1.5 0.3 1.0d 1.3 ^b ,d 1.5	$2,2 \\ 1,4 \\ 7,1 \\ 2,2 \\ 1,9 \\ 0,2 \\ 1,1 \\ 0,4 \\ 1,8 \\ 0,1 \\ 0,7 \\ - \\ 3,3 \\ 3,3 \\ $	$\begin{array}{c} 0.4 \\ - \\ 2.9 \\ 3.6 \\ - \\ 1.0 \\ 0.5 \\ - \\ 1.1 \\ - \\ 0.5 \\ 0.2 \\ 3.0 \end{array}$	$\begin{array}{c} 2.2 \\ 2.3 \\ 1.8 \\ 1.6 \\ 1.4 \\ 1.7 \\ 1.1 \\ 1.0 \\ 1.2 \\ - \\ 1.8 \\ 2.8 \\ - \end{array}$	9,9 17,8 13 6,8 25,4 0,8 10,5 12,2 7, 0,8 7,0 1,4 4,6	3.1 2.3 0 a 10.2 1.8 13,4 1,4 1,4 2,7 1,3 1,4 2,7	11,5 9,67 9,0 1,5 0,5 4,4 3,3 2,0 1,5 4,4 3,3 2,0 1,5 6,8 7 4,7	2,4 2,9 3,4 3,2 7,6 0,9 1,6 3,3 7,3 ^d 11,0 ^d 2,5 ^d	15,19,68,63,61,01,72,92,43,20,91,41,12,7	$\begin{array}{c} 6,6\\ 4,3\\ 5,4\\ 4,9\\ 2,1\\ 5,6\\ 6,8\\ 4,8\\ 5,3\\ 4,7\\ 6,4\\ 3,5\\ 3,5\end{array}$

 $\overline{a_{\rm The}}$ ions have the same elemental composition. ${}^{b}{\rm The}~{\rm NH}_{2}$ radical, and not the NH₃ molecule, is eliminated. ${}^{c}{\rm The}$ $[{\rm M}-{\rm N}_{3}]^{+}$ ion. ${}^{d}{\rm The}$ structure of the ion differs from that presented in the scheme. ${}^{e}{\rm The}$ total contribution of the Φ_{9} + $[\Phi_{9}$ - CH₃] and Φ_{10} + $[\Phi_{10}$ - CH₃] ions.

in the work [7] that the carboxamide group leads to the emergence of more complex structures for the $[M - N_2]^+$ ion. The thiocarboxamide group leads to the appearance of the form (F) (cf. below). It should be noted that the formation of the structures (D-F) assumes the rearrangement of the atoms; the intermediates formed at the early stages of the formation of these ions may decompose in some cases. A large amount of the isomeric forms of the $[M - N_2]^+$ ion leads to a variety of routes for the further decomposition of these ions; the structural formulas of the $[M - N_2]^+$ ion are not therefore presented in the Schemes 1 and 2.

The Φ_1 ion is formed by the cleavage of an ammonia molecule. The 5-amino group of the investigated thiadiazoles, and not the amide nitrogen atom, participates in this, since a molecule of ammonia, and not methylamine, is eliminated with the $[M - N_2]^+$ ion in the decomposition of the compounds (Ib, d) (X = CH₃).

It should be noted that there was not a single case where the process of decomposition, determined by the ortho effect of the substituents, were registered; this agrees with the data of other investigators [7].

The introduction of a more complex radical at the 4 position [compound (Ie) (X = CH_2COOEt)] leads to the appearance of the intense peaks of the $[M - C_2H_4]^+$, $[M - OC_2H_5]^+$, $[M - COOC_2H_5]^+$, and $[M - CH_2COOC_2H_5]^+$ fragments in the spectrum; the decomposition of the heterocyclic nucleus is thereby suppressed. It is for this reason that the intensities of the peaks of fragments, which are common with other thiadiazoles, are not presented in Table 1.

The thiadiazoles (Ik, l) are also characterized by routes of decomposition which are very similar to those presented in Scheme 1.

However, the stabilization of the $[M - N_2]^+$ ion with the formation of the five-membered heterocyclic ion (E) (cf. Scheme 1) is impossible when the hydrogen atom is absent from the amide group of these compounds. Structures of the type (B-D) are evidently formed in the given case. It is impossible to exclude more complex rearrangements.

The main difference in the decomposition of the isomeric triazoles (II) from the decomposition of thiadiazoles considered above, besides the low intensities of the peaks of the $[M - N_2]^+$ ions, is the high intensity of the peaks of the $[M - NHX]^+$ and $[M - NH_2X]^+$ fragments (see Table 2). It is logical to propose that the formation of these ions is determined by the ortho-effect [8]. However, such fragments are not formed at all in the decomposition of the isomeric thiadiazoles (I), and the geometry of the molecules is the same. Consequently, the moving force for this process is the possibility of the tautomeric conversions of the triazole ring due to the availability of the hydrogen atom at the $N_{(1)}$ nitrogen atom which is capable of free migration through the entire heterocyclic ring [9-11]. The tautomeric form of M^+ with the hydrogen atom at the $C_{(4)}$ carbon atom leads to the elimination of the H_2X or H_2Y molecules (see Scheme 2). For the confirmation of this hypothesis, the mass spectrum of the compound (IIj) with the fixed tautomeric form was studied. As was also to be expected from the proposed mechanism, the $[M - NH_3]^+$ and $[M - H_20]^+$ ions are not formed in the given case. An insignificant ortho-effect is observed in the decomposition of the triazoles (II); this is indicated by the peaks of the $[M - R^1NH]^+$ ions which are observed in the spectra of the compounds (IIg-i). However, the intensities of these fragments do not exceed 0.5% of the complete ion current. The tautomeric conversions in the triazole ring lead to the appearance of some other routes (not presented in the scheme) of the decomposition of M⁺, e.g., the formation of the NH-N=C-SH and NH=N=C=C=Y ions with the peak intensities at around 1% of the complete ion current. They are caused by the tautomeric form of the M^+ in which the hydrogen atom occurs at the central $N_{(2)}$ atom.

The main routes of the decomposition of the compounds (IIa-c, f) are presented in Scheme 2.

If the geometrical rearrangement of the molecule with the turning of the groups of atoms by 180° around the C-C bond is required for the formation of the structure (E) of the

TABLE 3. Relative Intensity of the Peaks of the Fragments which are Formed in the Decomposition of the $[M - N_2]^+$ Ion of the Structure (F)

Com- pound	$ \begin{array}{c} M-N_2,\\ -S_2 \end{array} $	$M - N_2, - S_2 H$	$M - N_2, - S_2 H_2$	$M - N_2, - S_2 H_3$		
Ic Id IIc IIj	3,8 3,8 1,7 0,6	5,3 8,2 2,6 4.1	1.7 1,0 1,1 0,7	0.1 1,8 		

2

Scheme

 $[M - N_2]^+$ ion in the case of the thiadiazoles, then there is no requirement for such a rearrangement in the case of the triazoles (II). The bond between the atoms of sulfur and nitrogen is possibly formed even before the elimination of the nitrogen molecule from the heterocycle. In fact, the 1,5-electrocyclization reaction proceeds; all the compounds (I) and (II) investigated in the present work were obtained by analogy with it [12]. Indirect confirmation of the possibility of such an isomerization is the formation of the ions 67 and 68 (2-3% of the complete ion current).*

The thiocarboxamide group in the compounds (Ic, d) and (IIc, j) leads to the appearance of one structure -(F) - for the $[M - N_2]^+$ ion. It is this form which causes the elimination of the S₂, S₂H, S₂H₂, and S₂H₃ molecules in one or several stages. The composition of these ions was determined with the aid of the high-resolution mass spectra. The relative intensities of the indicated fragments are presented in Table 3.

The methyl substituent R^2 in the triazole (IIj) leads to a significant change in the routes of decomposition, as was also noted previously [11]. This is first of all associated with the impossibility of the tautomerization of the M⁺. In consequence, the peaks of the $[M - NH_2]^+$ and $[M - NH_3]^+$ ions disappear completely. The [M - SH] and $[M - SH_2]$ fragments

^{*}The elemental composition of these ions was established with the aid of the high-resolution mass spectra (see Table 1).

TABLE 4. Mass Spectra of the Compounds (I) and (II)

Com- pound	Value of m/z , % (intensity of the peaks of the ions as a percentage of the maximal)*
ja	144 (100), 116 (17,5), 99 (15,9), 73 (50.0), 72 (12,7), 68 (10,3), 60 (14,3) 46 (66.7), 45 (28.6), 41 (46.8)
l p	158 (50,0), 130 (15,8), 113 (61,9), 73 (54,5), 72 (16,5), 68 (12,7), 60 (12,9) 58 (100), 46 (55,3), 45 (24,8)
10	160(100), 132(33,0), 105(33,0), 88(13,2), 72(14,9), 68(18,8), 67(26,6) = 60(64,4), 46(43,4), 45(97,8)
lq	174 (100), 146 (14,7), 129 (18.8), 88 (19,7), 81 (45,2), 74 (37,6), 73 (50,0), 60 (55,9), 46 (20,0), 45 (26,8)
le	230 (42,0), 185 (81,2), 157 (72,5), 128 (36,5), 100 (28,5), 74 (38,5), 73 (100). 72 (57,0) 46 (34,5) 45 (28,5)
I k	172 (41,2), 117 (6,4), 115 (6,7), 101 (18,3), 100 (10,0), 73 (6,8), 72 (100), 155 (6,7), 101 (18,3), 100 (10,0), 73 (6,8), 72 (100),
1 L	170(45.0), 142(43.6), 42(27.5), 170(45.0), 142(43.8), 86(31.5), 72(67.5), 70(36.3), 60(100), 59(45.0), 53(57.5), 45(45.0), 44(67.5)
i la	144 (94,2), 128 (12,7), 127 (100), 73 (20,7), 71 (13,1), 70 (16,2), 67 (12,9), 46 (13,6), 45 (31,9), 44 (50,0)
Пр	158 (100), 140 (11,0), 128 (25,4), 127 (29,7), 74 (12,1), 73 (12,0), 70 (8,6), 58 (47,0), 46 (9,0), 45 (18,1)
1 lC	162 (9,8), 160 (100), 143 (16,1), 127 (19,6), 72 (11,4), 70 (9,8), 67 (9,3), 60 (24,3), 46 (10,8), 45 (17,5)
۱£	159 (96,4), 128 (100), 127 (6,0), 102 (11,3), 72 (11,3), 70 (10,1), 69 (11,3), 68 (14,3), 60 (95), 45 (17,9)
llg	158 (90,4), 142 (19,2), 141 (100), 113 (22,2), 72 (32,7), 71 (38,5), 70 (24,6), 68 (17,5), 45 (48,1), 44 (51,2)
] jh	172 (72,0), 155 (46,0), 144 (67,5), 139 (41,4), 127 (100), 122 (57,6), 73 (34,2), 72 (100), 124 (51,4), 127 (100), 122 (57,6), 73 (34,2), 128 (51,4), 128 (51,6)
111	173 (28,0), 43 (34,0), 44 (81,0) 173 (68,4), 142 (100), 116 (12,3), 86 (23,7), 75 (10,2), 71 (25,4), 70 (13,2),
Нj	176 (9,5), 174 (12,0), 45 (10,7) 176 (9,5), 174 (100), 105 (10,0), 81 (15,0), 74 (9,6), 72 (16,0), 60 (16,5), 46 (9,5), 45 (12,5), 42 (19,0)

*The 10 most intense peaks in the spectrum are presented.

are observed, but the low intensity of their signals (0.5%) permits the proposition that the sulfur atom is cleaved from the 5 position - a process which proceeds for all of the considered triazoles (II).* The peaks of the ions, the formation of which is determined by the tautomeric conversions of the M⁺ (cf. above), are also not observed in the spectrum. Moreover, for some characteristic ions presented in Table 2, they accompany the fragments corresponding with the loss of the methyl radical. The peaks of the $[M - CH_3N_3]^+$ ion also possesses high intensity (2.4%). The intensity of the analogous $[M - HN_3]^+$ fragments in the mass spectra of the other triazoles (II) did not exceed 0.3%. The R² substituent also causes the redistribution of the contributions of the different structures of the $[M - N_2]^+$ ion to the total current of this ion. The azirine form (D) [5, 6], as well as the form (F) or its intermediate (see above), evidently acquire the greatest significance in the given case. A large number of specific routes for the decomposition of the $[M - N_2]^+$ ion arises in connection with this: the elimination of the ammonia molecule on account of the orthoeffect of the SH group, the appearance of the series of ions $[M - N_2, -S_nH_m]$ (Table 3), etc. The total contribution of these specific ions to the complete ion current thereby proves to be adequately high (15%).

The R¹ alkyl substituents [compounds (IIg-i)] lead to the appearance of the sufficiently intense $[M - SR]^+$ and SR⁺ fragments, as well as the $[M - SH]^+$ ion, which is characteristic of the decomposition of aromatic thioethers. The expansion of the aromatic ring thereby proceeds (to six-membered in the given case) due to the introduction of a carbon atom into it [13]. The intensity of the $[M - SH]^+$ fragment in the spectrum of the compounds (IIg-i) comprises 1.5, 4.4, and 0.1% correspondingly. On the whole, the R¹ substituent does not lead to a noticeable change in the fragmentation scheme of the triazole (see Scheme 2 and Table 2). The elimination of an ethylene molecule from the compound (IIh) (R¹ = C₂H₅) leads to the formation of the pseudomolecular ion of the triazole (IIa), and we are virtually dealing with the decomposition of two homologs, the spectra of which overlap in many respects. The decomposition of both homologs may be described by Scheme 2; therefore, in many cases it is difficult to determine whether a particular fragment is determined by the decompo-

*The SR^1 radical is cleaved in the case of the triazoles (IIg-i) with the alkyl substituent R^1 . The fragments with the corresponding intensities of 1.2, 0.8, and 2.6% thereby arise.

sition of the relevant compound - (IIa) or (IIh). Therefore, the intensities of the peaks of the fragments in the mass spectrum of compound (IIh) are not presented in Table 2.

When $X = NH_2$ [compounds (IIf, i)], the peak of the $[M - NHNH_2]^+$ ion becomes maximal; this ion is formed on account of the simple breaking of the bond in the M⁺. The formation of the form (G) of the $[M - N_2]^+$ ion permits an explanation of the synchronous elimination of the hydrogen atom and the nitrogen molecule from this ion; this leads to the $[M - N_4H]^+$ fragments with the intensities of 3.2% (IIf) and 2.8% (IIi).

Therefore, the analysis of the mass spectra, under electron impact, of the 5-amino-1,2,3-thiadiazoles (I) and 5-mercapto-1,2,3-triazoles (II) showed that these isomeric compounds can be readily identified by mass spectrometry. The $[M - N_2]^+$, $[M - NHX]^+$, $[M - NH_2X]^+$, and $[M - H_2Y]^+$ ions are key ions in the assignment of a compound to one or the other class. The $[M - N_2]^+$ ion in the spectra of the thiadiazoles is approximately tenfold more intense, and comprises 3-7% of the complete ion current. The intensity of this fragment comprises less than 0.5% in the mass spectra of the triazoles (II). The remaining fragments indicated are not observed in the spectra of the thiadiazoles (I), whereas the intensities of the peaks of these ions are very high (up to 30% of the complete ion current) in the case of the triazoles with an unsubstituted hydrogen atom at the ring nitrogen atom, and are determined by the tautomerism of the M⁺. The substitution of the hydrogen atom by the alkyl group leads to the complete suppression of such processes.

EXPERIMENTAL

The compounds were synthesized in the Urals Polytechnical Institute by the methods of [12]. The mass spectral experiment and the accurate measurement of the mass fragments were performed on a Finnigan MAT-212 instrument using the system of the direct introduction of the substance into the ion source. The energy of the ionizing electrons was 70 eV; the exposure temperature was 30-100°C depending on the volatility of the sample. The determination of the accurate ion mass was performed manually.

LITERATURE CITED

- 1. R. Kh'yuzgen, Khim. Geterotsikl. Soedin., No. 5, 579 (1981).
- 2. M. Katsutada and A. Yoshitsugu, Synthesis, No. 6, 470 (1979).
- 3. M. Y. Leninson and M. P. Cawa, Heterocycles, <u>19</u>, 241 (1982).
- 4. K.-P. Zeller, H. Meier, and E. Muller, Org. Mass Spectrom., 5, 373 (1971).
- 5. K.-P. Zeller, H. Meier, and E. Muller, Tetrahedron, 28, 1353 (1972).
- 6. M. Uher, A. Rybar, A. Martvon, and J. Lesko, Chem. Zvesti, <u>30</u>, 217 (1976).
- 7. B. J. Millard and D. L. Pain, J. Chem. Soc. C, No. 15, 2042 (1970).
- 8. H. Schwars, Top. Curr. Chem., 73, 231 (1978).
- 9. A. Maquestiau, Y. Van Haverbeke, R. Flammang, M. C. Pardo, and J. Elguero, Org. Mass Spectrom., 7, 1267 (1973).
- A. Maquestiau, Y. Van Haverbeke, R. Flammang, and J. Elguero, Org. Mass Spectrom., 7, 271 (1973).
- 11. A. T. Lebedev, P. A. Sharbatyan, A. G. Kazaryan, V. A. Bakulev, Yu. M. Shafran, and V. S. Petrosyan, Khim. Geterotsikl. Soedin., No. 10, 1343 (1986).
- 12. Yu. M. Shafran, V. A. Bakulev, V. S. Mokrushin, and T. I. Validuda, Khim. Geterotsikl. Soedin., No. 5, 691 (1986).
- P. B. Terent'ev, Mass Spectrometry in Organic Chemistry [in Russian], Vysshaya Shkola, Moscow (1979).